Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers.

Identifieur interne : 002791 ( Main/Exploration ); précédent : 002790; suivant : 002792

Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers.

Auteurs : Amir Mahboubi [Suède] ; Christine Ratke ; András Gorzsás ; Manoj Kumar ; Ewa J. Mellerowicz ; Totte Niittyl

Source :

RBID : pubmed:24170204

Descripteurs français

English descriptors

Abstract

Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H(+) symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after (13)CO2 assimilation, the SUT3RNAi lines contained more (13)C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers.

DOI: 10.1104/pp.113.227603
PubMed: 24170204
PubMed Central: PMC3846136


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers.</title>
<author>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea</wicri:regionArea>
<wicri:noRegion>SE 90183 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ratke, Christine" sort="Ratke, Christine" uniqKey="Ratke C" first="Christine" last="Ratke">Christine Ratke</name>
</author>
<author>
<name sortKey="Gorzsas, Andras" sort="Gorzsas, Andras" uniqKey="Gorzsas A" first="András" last="Gorzsás">András Gorzsás</name>
</author>
<author>
<name sortKey="Kumar, Manoj" sort="Kumar, Manoj" uniqKey="Kumar M" first="Manoj" last="Kumar">Manoj Kumar</name>
</author>
<author>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24170204</idno>
<idno type="pmid">24170204</idno>
<idno type="doi">10.1104/pp.113.227603</idno>
<idno type="pmc">PMC3846136</idno>
<idno type="wicri:Area/Main/Corpus">002425</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002425</idno>
<idno type="wicri:Area/Main/Curation">002425</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002425</idno>
<idno type="wicri:Area/Main/Exploration">002425</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers.</title>
<author>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea</wicri:regionArea>
<wicri:noRegion>SE 90183 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ratke, Christine" sort="Ratke, Christine" uniqKey="Ratke C" first="Christine" last="Ratke">Christine Ratke</name>
</author>
<author>
<name sortKey="Gorzsas, Andras" sort="Gorzsas, Andras" uniqKey="Gorzsas A" first="András" last="Gorzsás">András Gorzsás</name>
</author>
<author>
<name sortKey="Kumar, Manoj" sort="Kumar, Manoj" uniqKey="Kumar M" first="Manoj" last="Kumar">Manoj Kumar</name>
</author>
<author>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Cell Membrane (metabolism)</term>
<term>Fructose (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Membrane Transport Proteins (genetics)</term>
<term>Membrane Transport Proteins (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Phloem (metabolism)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Stems (growth & development)</term>
<term>Plant Stems (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (ultrastructure)</term>
<term>Protein Transport (MeSH)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Subcellular Fractions (metabolism)</term>
<term>Sucrose (metabolism)</term>
<term>Wood (anatomy & histology)</term>
<term>Wood (growth & development)</term>
<term>Wood (metabolism)</term>
<term>Wood (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Bois (anatomie et histologie)</term>
<term>Bois (croissance et développement)</term>
<term>Bois (métabolisme)</term>
<term>Bois (ultrastructure)</term>
<term>Carbone (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Fractions subcellulaires (métabolisme)</term>
<term>Fructose (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Phloème (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Populus (ultrastructure)</term>
<term>Protéines de transport membranaire (génétique)</term>
<term>Protéines de transport membranaire (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Saccharose (métabolisme)</term>
<term>Tiges de plante (croissance et développement)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Transport Proteins</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Carbon Dioxide</term>
<term>Fructose</term>
<term>Glucose</term>
<term>Membrane Transport Proteins</term>
<term>Plant Proteins</term>
<term>RNA, Messenger</term>
<term>Sucrose</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Bois</term>
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Populus</term>
<term>Protéines de transport membranaire</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Phloem</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Subcellular Fractions</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Bois</term>
<term>Carbone</term>
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Fractions subcellulaires</term>
<term>Fructose</term>
<term>Glucose</term>
<term>Membrane cellulaire</term>
<term>Phloème</term>
<term>Populus</term>
<term>Protéines de transport membranaire</term>
<term>Protéines végétales</term>
<term>Saccharose</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Phenotype</term>
<term>Protein Transport</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bois</term>
<term>Interférence par ARN</term>
<term>Isotopes du carbone</term>
<term>Phénotype</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H(+) symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after (13)CO2 assimilation, the SUT3RNAi lines contained more (13)C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24170204</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>163</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers.</ArticleTitle>
<Pagination>
<MedlinePgn>1729-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.113.227603</ELocationID>
<Abstract>
<AbstractText>Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H(+) symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after (13)CO2 assimilation, the SUT3RNAi lines contained more (13)C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mahboubi</LastName>
<ForeName>Amir</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ratke</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gorzsás</LastName>
<ForeName>András</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Manoj</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mellerowicz</LastName>
<ForeName>Ewa J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Niittylä</LastName>
<ForeName>Totte</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026901">Membrane Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C078729">sucrose transport protein, plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>30237-26-4</RegistryNumber>
<NameOfSubstance UI="D005632">Fructose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>57-50-1</RegistryNumber>
<NameOfSubstance UI="D013395">Sucrose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005632" MajorTopicYN="N">Fructose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026901" MajorTopicYN="N">Membrane Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013347" MajorTopicYN="N">Subcellular Fractions</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013395" MajorTopicYN="N">Sucrose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24170204</ArticleId>
<ArticleId IdType="pii">pp.113.227603</ArticleId>
<ArticleId IdType="doi">10.1104/pp.113.227603</ArticleId>
<ArticleId IdType="pmc">PMC3846136</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2012 Jan 13;335(6065):173-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22246760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1981 May;67(5):1007-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13979-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):196-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Nov;6(6):730-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15570479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1439-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):2019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):288-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2012 Mar;14(2):325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21972845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(5):757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1986 Sep;168(3):377-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Sep;213(5):811-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11678287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jun;66(5):903-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21332846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):563-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1518-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jan 13;335(6065):207-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22157085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:341-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2012 Nov;99(11):1745-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23125435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jan;29(1):36-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jun;70(6):967-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22288715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):239-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2011 Jan;248(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21125302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(4):759-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1969 Dec;32(3):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5361396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Jan 1;13(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8306952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Apr;25(4):1314-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Jul;4(4):730-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21596688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 May;48(5):689-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Sep;118(1):59-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733526</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gorzsas, Andras" sort="Gorzsas, Andras" uniqKey="Gorzsas A" first="András" last="Gorzsás">András Gorzsás</name>
<name sortKey="Kumar, Manoj" sort="Kumar, Manoj" uniqKey="Kumar M" first="Manoj" last="Kumar">Manoj Kumar</name>
<name sortKey="Mellerowicz, Ewa J" sort="Mellerowicz, Ewa J" uniqKey="Mellerowicz E" first="Ewa J" last="Mellerowicz">Ewa J. Mellerowicz</name>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<name sortKey="Ratke, Christine" sort="Ratke, Christine" uniqKey="Ratke C" first="Christine" last="Ratke">Christine Ratke</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002791 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002791 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24170204
   |texte=   Aspen SUCROSE TRANSPORTER3 allocates carbon into wood fibers.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24170204" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020